Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
1.
Arch. latinoam. nutr ; 73(1): 74-85, mar. 2023. ilus, tab
Article in Spanish | WHO COVID, LILACS (Americas) | ID: covidwho-20241999

ABSTRACT

Introducción. El síndrome metabólico (SM) aumenta el ingreso hospitalario y el riesgo de desarrollar COVID-19, los fármacos utilizados para su tratamiento ocasionan efectos secundarios por lo que se ha optado por la búsqueda de alternativas terapéuticas a base de compuestos bioactivos contenidos en plantas medicinales. La canela se utiliza como agente terapéutico debido a sus propiedades comprobadas con diversos mecanismos de acción reportados en el tratamiento de varias patologías. Objetivo. Documentar los estudios in vitro, in vivo, estudios clínicos y los mecanismos de acción reportados del efecto de la administración de extractos y polvo de canela en las comorbilidades relacionadas con el SM. Materiales y métodos. Revisión sistemàtica de artículos en bases de datos electrónicas, incluyendo estudios de canela en polvo, extractos acuosos, de acetato de etilo y metanol de la corteza de canela, período de 5 años, excluyendo todo artículo relacionado a su efecto antimicrobiano, antifúngico y aceite de canela. Resultados. Las evidencias de los principales compuestos bioactivos contenidos en la canela validan su potencial en el tratamiento de enfermedades relacionadas al SM, con limitados estudios que indagan en los mecanismos de acción correspondientes a sus actividades biológicas. Conclusiones. Las evidencias de las investigaciones validan su potencial en el tratamiento de estas patologías, debido a sus principales compuestos bioactivos: cinamaldehído, transcinamaldehído, ácido cinámico, eugenol y, antioxidantes del tipo proantocianidinas A y flavonoides, los cuales participan en diversos mecanismos de acción que activan e inhiben enzimas, con efecto hipoglucemiante (quinasa y fosfatasa), antiobesogénico (UPC1), antiinflamatorio (NOS y COX), hipolipemiante (HMG-CoA) y antihipertensivo (ECA)(AU)


Introduction. Metabolic syndrome (MS) increases hospital admission and the risk of developing COVID-19. Due to the side effects caused by the drugs used for its treatment, the search for therapeutic alternatives based on bioactive compounds contained in medicinal plants has been chosen. Cinnamon is used as a therapeutic agent due to its proven properties with various mechanisms of action reported in the treatment of various pathologies. Objective. To document the in vitro and in vivo studies, clinical studies and the mechanisms of action reported on the effect of the administration of cinnamon extracts and powder on comorbidities related to MS. Materials and methods. Systematic review of articles in electronic databases, including studies of cinnamon powder, aqueous extracts, ethyl acetate and methanol from cinnamon bark, over a period of 5 years, excluding all those articles related to its antimicrobial, antifungal and antimicrobial effect. cinnamon oil. Results. The evidence of the main bioactive compounds contained in cinnamon validates its potential in the treatment of diseases related to MS, with limited studies that investigate the mechanisms of action corresponding to its biological activities. Conclusions. Research evidence validates its potential in the treatment of these pathologies, due to its main bioactive compounds: cinnamaldehyde, transcinnamaldehyde, cinnamic acid, eugenol, and antioxidants of the proanthocyanidin A type and flavonoids, which participate in various mechanisms of action that activate and they inhibit enzymes, with hypoglycemic (kinase and phosphatase), antiobesogenic (UPC1), anti-inflammatory (NOS and COX), lipid-lowering (HMG-CoA) and antihypertensive (ACE) effects(AU)


Subject(s)
Humans , Male , Female , Cinnamomum zeylanicum , Metabolic Syndrome , Diabetes Mellitus , Phytochemicals , Obesity , Body Weight , Hypoglycemic Agents , Anti-Inflammatory Agents
2.
Biomed Res Int ; 2023: 5469258, 2023.
Article in English | MEDLINE | ID: covidwho-2315143

ABSTRACT

SARS-CoV-2, a deadly coronavirus sparked COVID-19 pandemic around the globe. With an increased mutation rate, this infectious agent is highly transmissible inducing an escalated rate of infections and death everywhere. Hence, the discovery of a viable antiviral therapy option is urgent. Computational approaches have offered a revolutionary framework to identify novel antimicrobial treatment regimens and allow a quicker, cost-effective, and productive conversion into the health center by evaluating preliminary and safety investigations. The primary purpose of this research was to find plausible plant-derived antiviral small molecules to halt the viral entrance into individuals by clogging the adherence of Spike protein with human ACE2 receptor and to suppress their genome replication by obstructing the activity of Nsp3 (Nonstructural protein 3) and 3CLpro (main protease). An in-house library of 1163 phytochemicals were selected from the NPASS and PubChem databases for downstream analysis. Preliminary analysis with SwissADME and pkCSM revealed 149 finest small molecules from the large dataset. Virtual screening using the molecular docking scoring and the MM-GBSA data analysis revealed that three candidate ligands CHEMBL503 (Lovastatin), CHEMBL490355 (Sulfuretin), and CHEMBL4216332 (Grayanoside A) successfully formed docked complex within the active site of human ACE2 receptor, Nsp3, and 3CLpro, respectively. Dual method molecular dynamics (MD) simulation and post-MD MM-GBSA further confirmed efficient binding and stable interaction between the ligands and target proteins. Furthermore, biological activity spectra and molecular target analysis revealed that all three preselected phytochemicals were biologically active and safe for human use. Throughout the adopted methodology, all three therapeutic candidates significantly outperformed the control drugs (Molnupiravir and Paxlovid). Finally, our research implies that these SARS-CoV-2 protein antagonists might be viable therapeutic options. At the same time, enough wet lab evaluations would be needed to ensure the therapeutic potency of the recommended drug candidates for SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Molecular Docking Simulation , Pandemics , Ligands , Angiotensin-Converting Enzyme 2/metabolism , Viral Nonstructural Proteins/chemistry , Molecular Dynamics Simulation , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
3.
Comb Chem High Throughput Screen ; 25(14): 2398-2412, 2022.
Article in English | MEDLINE | ID: covidwho-2302565

ABSTRACT

The human has two lungs responsible for respiration and drug metabolism. Severe lung infection caused by bacteria, mycobacteria, viruses, fungi, and parasites may lead to lungs injury. Smoking and tobacco consumption may also produce lungs injury. Inflammatory and pain mediators are secreted by alveolar macrophages. The inflammatory mediators, such as cytokines, interleukin (IL)-1, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF)-α, neutrophils, and fibroblasts are accumulated in the alveoli sac, which becomes infected. It may lead to hypoxia followed by severe pulmonary congestion and the death of the patient. There is an urgent need for the treatment of artificial respiration and ventilation. However, the situation may be the worst for patients suffering from lung cancer, pulmonary tuberculosis, and acute pneumonia caused by acute respiratory distress syndrome (ARDS). Re-urgency has been happening in the case of coronavirus disease of 2019 (COVID-19) patients. Therefore, it is needed to protect the lungs with the intake of natural phytomedicines. In the present review, several selected phyto components having the potential role in lung injury therapy have been discussed. Regular intake of natural vegetables and fruits bearing these constituents may save the lungs even in the dangerous attack of SARS-CoV-2 in lung cancer, pulmonary TB, and pneumatic patients.


Subject(s)
COVID-19 Drug Treatment , Lung Injury , Pneumonia , Humans , Lung Injury/metabolism , Lung Injury/pathology , SARS-CoV-2 , Lung/metabolism , Lung/pathology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1/metabolism , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
4.
Biomed Res Int ; 2023: 1977602, 2023.
Article in English | MEDLINE | ID: covidwho-2275916

ABSTRACT

RNA viruses have been the most destructive due to their transmissibility and lack of control measures. Developments of vaccines for RNA viruses are very tough or almost impossible as viruses are highly mutable. For the last few decades, most of the epidemic and pandemic viral diseases have wreaked huge devastation with innumerable fatalities. To combat this threat to mankind, plant-derived novel antiviral products may contribute as reliable alternatives. They are assumed to be nontoxic, less hazardous, and safe compounds that have been in uses in the beginning of human civilization. In this growing COVID-19 pandemic, the present review amalgamates and depicts the role of various plant products in curing viral diseases in humans.


Subject(s)
COVID-19 , Magnoliopsida , RNA Viruses , Humans , Pandemics/prevention & control , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , RNA
5.
Biochemistry (Mosc) ; 88(1): 64-72, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2282385

ABSTRACT

Medicinal plants and their therapeutically promising chemical compounds belonging to the valued category of 'traditional medicine' are potential remedies for various health problems. Due to their complex structure and enormous health benefits, the high-value plant-derived metabolites collectively termed as 'phytochemicals' have emerged as a crucial source for novel drug discovery and development. Indeed, several medicinal plants from diverse habitats are still in the 'underexplored' category in terms of their bioactive principles and therapeutic potential. COVID-19, infection caused by the SARS-CoV-2, first reported in November 2019, resulted in the alarming number of deaths (6.61 million), was further declared 'pandemic', and spread of the disease has continued till today. Even though the well-established scientific world has successfully implemented vaccines against COVID-19 within the short period of time, the focus on alternative remedies for long-term symptom management and immunity boosting have been increased. At this point, interventions based on traditional medicine, which include medicinal plants, their bioactive metabolites, extracts and formulations, attracted a lot of attention as alternative solutions for COVID-19 management. Here, we reviewed the recent research findings related to the effectiveness of phytochemicals in treatment or prevention of COVID-19. Furthermore, the literature regarding the mechanisms behind the preventive or therapeutic effects of these natural phytochemicals were also discussed. In conclusion, we suggest that the active plant-derived components could be used alone or in combination as an alternative solution for the management of SARS-CoV-2 infection. Moreover, the structure of these natural productomes may lead to the emergence of new prophylactic strategies for SARS-CoV-2-caused infection.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines , Drug Discovery , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
6.
Biotechnol Appl Biochem ; 69(5): 2028-2045, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2285281

ABSTRACT

Phytochemicals are the natural biomolecules produced by plants via primary or secondary metabolism, which have been known to have many potential health benefits to human beings. Flavonoids or phytoestrogens constitute a major group of such phytochemicals widely available in variety of vegetables, fruits, herbs, tea, and so forth, implicated in a variety of bio-pharmacological and biochemical activities against diseases including bacterial, viral, cancer, inflammatory, and autoimmune disorders. More recently, these natural biomolecules have been shown to have effective antiviral properties via therapeutically active ingredients within them, acting at different stages of infection. Current review emphasizes upon the role of these flavonoids in physiological functions, prevention and treatment of viral diseases. More so the review focuses specifically upon the antiviral effects exhibited by these natural biomolecules against RNA viruses including coronaviruses. Furthermore, the article would certainly provide a lead to the scientific community for the effective therapeutic antiviral use of flavonoids using potential cost-effective tools for improvement of the pharmacokinetics, bioavailability, and biodistribution of such compounds for the concrete action along with the promotion of human health.


Subject(s)
Antiviral Agents , Phytochemicals , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Tissue Distribution , Phytochemicals/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonoids/chemistry , Plant Extracts/chemistry , Polyphenols
7.
Naunyn Schmiedebergs Arch Pharmacol ; 395(12): 1525-1536, 2022 12.
Article in English | MEDLINE | ID: covidwho-2272369

ABSTRACT

Aloe vera (L.) Burm.f. is nicknamed the 'Miracle plant' or sometimes as the 'Wonder plant'. It is a plant that has been used since ancient times for the innumerable health benefits associated with it. It is one of the important plants that has its use in conventional medicinal treatments. It is a perennial succulent, drought-tolerant member of the family Asphodelaceae. There are scores of properties associated with the plant that help in curing various forms of human ailments. Extracts and gels obtained from plants have been shown to be wonderful healers of different conditions, mainly various skin problems. Also, this plant is popular in the cosmetics industry. The underlying properties of the plant are now mainly associated with the natural phytochemicals present in the plant. Diverse groups of phytoingredients are found in the plant, including various phenolics, amino acids, sugars, vitamins, and different other organic compounds, too. One of the primary ingredients found in the plant is the aloin molecule. It is an anthraquinone derivative and exists as an isomer of Aloin A and Aloin B. Barbaloin belonging to the first group is a glucoside of the aloe-emodin anthrone molecule. Various types of pharmacological properties exhibited by the plant can be attributed to this chemical. Few significant ones are antioxidant, anti-inflammatory, anti-diabetic, anti-cancer, anti-microbial, and anti-viral, along with their different immunity-boosting actions. Recently, molecular coupling studies have also found the role of these molecules as a potential cure against the ongoing COVID-19 disease. This study comprehensively focuses on the numerous pharmacological actions of the primary compound barbaloin obtained from the Aloe vera plant along with the mechanism of action and the potent application of these natural molecules under various conditions.


Subject(s)
Aloe , COVID-19 , Humans , Aloe/chemistry , Anthracenes/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry
8.
Pharmacol Res ; 180: 106246, 2022 06.
Article in English | MEDLINE | ID: covidwho-2258937

ABSTRACT

Uncontrolled inflammation and failure to resolve the inflammatory response are crucial factors involved in the progress of inflammatory diseases. Current therapeutic strategies aimed at controlling excessive inflammation are effective in some cases, though they may be accompanied by severe side effects, such as immunosuppression. Phytochemicals as a therapeutic alternative can have a fundamental impact on the different stages of inflammation and its resolution. Biochanin A (BCA) is an isoflavone known for its wide range of pharmacological properties, especially its marked anti-inflammatory effects. Recent studies have provided evidence of BCA's abilities to activate events essential for resolving inflammation. In this review, we summarize the most recent findings from pre-clinical studies of the pharmacological effects of BCA on the complex signaling network associated with the onset and resolution of inflammation and BCA's potential protective functionality in several models of inflammatory diseases, such as arthritis, pulmonary disease, neuroinflammation, and metabolic disease.


Subject(s)
Genistein , Isoflavones , Genistein/pharmacology , Genistein/therapeutic use , Humans , Inflammation/drug therapy , Phytochemicals/pharmacology , Phytotherapy
9.
Oxid Med Cell Longev ; 2022: 9354555, 2022.
Article in English | MEDLINE | ID: covidwho-2258876

ABSTRACT

C. camphora is a renowned traditional Unani medicinal herb and belongs to the family Lauraceae. It has therapeutic applications in various ailments and prophylactic properties to prevent flu-like epidemic symptoms and COVID-19. This comprehensive appraisal is to familiarize the reader with the traditional, broad applications of camphor both in Unani and modern medicine and its effects on bioactive molecules. Electronic databases such as Web of Science, PubMed, Google Scholar, Scopus, and Research Gate were searched for bioactive molecules, and preclinical/clinical research and including 59 research and review papers up to 2022 were retrieved. Additionally, 21 classical Unani and English herbal pharmacopeia books with ethnomedicinal properties and therapeutic applications were explored. Oxidative stress significantly impacts aging, obesity, diabetes mellitus, depression, and neurodegenerative diseases. The polyphenolic bioactive compounds such as linalool, borneol, and nerolidol of C. camphora have antioxidant activity and have the potential to remove free radicals. Its other major bioactive molecules are camphor, cineole, limelol, safrole, limonene, alpha-pinene, and cineole with anti-inflammatory, antibacterial, anxiolytic, analgesic, immunomodulatory, antihyperlipidemic, and many other pharmacological properties have been established in vitro or in vivo preclinical research. Natural bioactive molecules and their mechanisms of action and applications in diseases have been highlighted, with future prospects, gaps, and priorities that need to be addressed.


Subject(s)
Anti-Anxiety Agents , COVID-19 Drug Treatment , Cinnamomum camphora , Analgesics , Anti-Bacterial Agents , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Camphor , Ethnopharmacology , Eucalyptol , Hypolipidemic Agents , Limonene , Phytochemicals , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Safrole
10.
J Chem Inf Model ; 63(7): 2104-2121, 2023 04 10.
Article in English | MEDLINE | ID: covidwho-2231808

ABSTRACT

The emergence of SARS-CoV-2 in December 2019 has become a global issue due to the continuous upsurge in patients and the lack of drug efficacy for treatment. SARS-CoV-2 3CLPro is one of the most intriguing biomolecular targets among scientists worldwide for developing antiviral drugs due to its relevance in viral replication and transcription. Herein, we utilized computer-assisted drug screening to investigate 326 natural products from Thai traditional plants using structure-based virtual screening against SARS-CoV-2 3CLPro. Following the virtual screening, the top 15 compounds based on binding energy and their interactions with key amino acid Cys145 were obtained. Subsequently, they were further evaluated for protein-ligand complex stability via molecular dynamics simulation and binding free energy calculation using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches. Following drug-likeness and ADME/Tox assessments, seven bisbenzylisoquinolines were obtained, including neferine (3), liensinine (4), isoliensinine (5), dinklacorine (8), tiliacorinine (13), 2'-nortiliacorinine (14), and yanangcorinine (15). These compounds computationally showed a higher binding affinity than native N3 and GC-373 inhibitors and attained stable interactions on the active site of 3CLpro during 100 ns in molecular dynamics (MD) simulation. Moreover, the in vitro enzymatic assay showed that most bisbenzylisoquinolines could experimentally inhibit SARS-CoV-2 3CLPro. To our delight, isoliensinine (5) isolated from Nelumbo nucifera demonstrated the highest inhibition of protease activity with the IC50 value of 29.93 µM with low toxicity on Vero cells. Our findings suggested that bisbenzylisoquinoline scaffolds could be potentially used as an in vivo model for the development of effective anti-SARS-CoV-2 drugs.


Subject(s)
Antiviral Agents , Benzylisoquinolines , SARS-CoV-2 , Animals , Humans , Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , Chlorocebus aethiops , COVID-19 , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors , SARS-CoV-2/drug effects , Vero Cells , Plants, Medicinal/chemistry , Phytochemicals/pharmacology
11.
J Pharm Biomed Anal ; 227: 115288, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2237238

ABSTRACT

Qingjin Yiqi Granules (QJYQ) is a Traditional Chinese Medicines (TCMs) prescription for the patients with post-COVID-19 condition. It is essential to carry out the quality evaluation of QJYQ. A comprehensive investigation was conducted by establishing deep-learning assisted mass defect filter (deep-learning MDF) mode for qualitative analysis, ultra-high performance liquid chromatography and scheduled multiple reaction monitoring method (UHPLC-sMRM) for precise quantitation to evaluate the quality of QJYQ. Firstly, a deep-learning MDF was used to classify and characterize the whole phytochemical components of QJYQ based on the mass spectrum (MS) data of ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry (UHPLC-Q-TOF/MS). Secondly, the highly sensitive UHPLC-sMRM data-acquisition method was established to quantify the multi-ingredients of QJYQ. Totally, nine major types of phytochemical compounds in QJYQ were intelligently classified and 163 phytochemicals were initially identified. Furthermore, fifty components were rapidly quantified. The comprehensive evaluation strategy established in this study would provide an effective tool for accurately evaluating the quality of QJYQ as a whole.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Plants, Medicinal , Humans , Mass Spectrometry/methods , Medicine, Chinese Traditional , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Phytochemicals , Drugs, Chinese Herbal/chemistry
12.
Molecules ; 28(2)2023 Jan 16.
Article in English | MEDLINE | ID: covidwho-2216644

ABSTRACT

A number of phytochemicals have been identified as promising drug molecules against a variety of diseases using an in-silico approach. The current research uses this approach to identify the phyto-derived drugs from Andrographis paniculata (Burm. f.) Wall. ex Nees (AP) for the treatment of diphtheria. In the present study, 18 bioactive molecules from Andrographis paniculata (obtained from the PubChem database) were docked against the diphtheria toxin using the AutoDock vina tool. Visualization of the top four molecules with the best dockscore, namely bisandrographolide (-10.4), andrographiside (-9.5), isoandrographolide (-9.4), and neoandrographolide (-9.1), helps gain a better understanding of the molecular interactions. Further screening using molecular dynamics simulation studies led to the identification of bisandrographolide and andrographiside as hit compounds. Investigation of pharmacokinetic properties, mainly ADMET, along with Lipinski's rule and binding affinity considerations, narrowed down the search for a potent drug to bisandrographolide, which was the only molecule to be negative for AMES toxicity. Thus, further modification of this compound followed by in vitro and in vivo studies can be used to examine itseffectiveness against diphtheria.


Subject(s)
Andrographis , Corynebacterium diphtheriae , Diphtheria , Diterpenes , Andrographis paniculata , Andrographis/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Plant Extracts/pharmacology , Phytochemicals/pharmacology
13.
Arq. ciências saúde UNIPAR ; 26(3): 1304-1312, set-dez. 2022.
Article in Portuguese | WHO COVID, LILACS (Americas) | ID: covidwho-2205391

ABSTRACT

A COVID-19 surgiu de forma repentina, acometendo milhões de pessoas e causando muitas mortes no mundo todo. Diante disso, torna-se necessário a busca de substâncias bioativas com propriedades antivirais. No Brasil, a espécie Tetradenia riparia foi inserida como planta ornamental exótica, com aroma intenso e agradável, sendo cultivada em parques, jardins, residenciais e hortos. O objetivo deste estudo foi identificar compostos presentes no extrato bruto das folhas de Tetradenia riparia com interesse antiviral. O extrato bruto das folhas secas foi obtido por maceração dinâmica por esgotamento do solvente e após, concentrado em evaporador rotativo. A composição química do extrato bruto foi analisada por cromatografia líquida de ultra eficiência acoplada à espectrometria de massas de alta resolução (UHPLC-ESI/qTOF). Foram identificados 31 compostos que foram investigados por meio de levantamento bibliográfico quanto ao seu potencial anti- SARS-CoV-2. Os compostos rosmanol, procianidina, cianidina, betulina, ácido betulínico e o ácido sagerínico, apresentaram potencial atividade antiviral sobre o SARS-CoV-2. Esta investigação é promissora, indicando possivelmente que no extrato bruto das folhas de T. ripária existem compostos que podem combater o SARS-CoV-2. Neste sentido, estudos de ancoramento molecular (docking) e análises in silico sobre a proteína Mpro do vírus devem ser realizadas corroborando desta forma a ação dos compostos identificados.


COVID-19 appeared suddenly, affecting millions of people and causing many deaths worldwide. Therefore, it is necessary to search for bioactive substances with antiviral properties. In Brazil, Tetradenia riparia was inserted as an exotic ornamental plant, with an intense and pleasant aroma, cultivated in parks, residential and vegetable gardens. This study aimed to identify compounds present in the crude extract of Tetradenia riparia leaves with antiviral interest. The crude extract of the dried leaves was obtained by dynamic maceration with solvent exhaustion and then concentrated in a rotary evaporator. The chemical composition of the crude extract was analyzed by ultra- performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC- ESI/qTOF). We identified 31 compounds investigated through a literature review for their anti- SARS-CoV-2 potential. The compounds rosmanol, procyanidin, cyanidin, betulin, betulinic acid, and sagerinic acid showed potential antiviral activity against SARS-CoV-2. Therefore, this investigation is promising, possibly indicating that in the crude extract of T. riparia leaves, there are compounds that can fight SARS-CoV-2. In this sense, molecular docking studies and in silico analyzes on the virus Mpro protein must be carried out, thus corroborating the action of the identified compounds.


SARS-CoV-19 ha aparecido repentinamente, afectando a millones de personas y causando muchas muertes en todo el mundo. Por ello, se hace necesaria la búsqueda de sustancias bioactivas con propiedades antivirales. En Brasil, la especie Tetradenia riparia ha sido introducida como planta ornamental exótica, con un aroma intenso y agradable, siendo cultivada en parques, jardines, residencias y centros de jardinería. El objetivo de este estudio fue identificar los compuestos presentes en el extracto crudo de las hojas de Tetradenia riparia con interés antiviral. El extracto crudo de las hojas secas se obtuvo por maceración dinámica por agotamiento del disolvente y después, se concentró en el evaporador rotatorio. La composición química del extracto crudo se analizó mediante cromatografía líquida de ultra rendimiento acoplada a espectrometría de masas de alto rendimiento (UHPLC-ESI/qTOF). Se identificaron 31 compuestos y se investigó su potencial anti-SARS-CoV-2 mediante un estudio bibliográfico. Los compuestos rosmanol, procianidina, cianidina, betulina, ácido betulínico y ácido sagerínico, mostraron una potencial actividad antiviral sobre el SARS-CoV-2. Esta investigación es prometedora, pues posiblemente indica que en el extracto crudo de las hojas de T. riparia hay compuestos que pueden combatir el SARS-CoV-2. En este sentido, deben realizarse estudios de docking y análisis in silico sobre la proteína Mpro del virus para corroborar la acción de los compuestos identificados.


Subject(s)
Antiviral Agents/analysis , Plant Leaves , Lamiaceae/toxicity , Complex Mixtures/analysis , SARS-CoV-2/drug effects , Chromatography, Liquid/instrumentation , Complex Mixtures , Phytochemicals/analysis , Betulinic Acid/analysis
14.
Molecules ; 28(2)2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2200547

ABSTRACT

The novel pathogenic virus was discovered in Wuhan, China (December 2019), and quickly spread throughout the world. Further analysis revealed that the pathogenic strain of virus was corona but it was distinct from other coronavirus strains, and thus it was renamed 2019-nCoV or SARS-CoV-2. This coronavirus shares many characteristics with other coronaviruses, including SARS-CoV and MERS-CoV. The clinical manifestations raised in the form of a cytokine storm trigger a complicated spectrum of pathophysiological changes that include cardiovascular, kidney, and liver problems. The lack of an effective treatment strategy has imposed a health and socio-economic burden. Even though the mortality rate of patients with this disease is lower, since it is judged to be the most contagious, it is considered more lethal. Globally, the researchers are continuously engaged to develop and identify possible preventive and therapeutic regimens for the management of disease. Notably, to combat SARS-CoV-2, various vaccine types have been developed and are currently being tested in clinical trials; these have also been used as a health emergency during a pandemic. Despite this, many old antiviral and other drugs (such as chloroquine/hydroxychloroquine, corticosteroids, and so on) are still used in various countries as emergency medicine. Plant-based products have been reported to be safe as alternative options for several infectious and non-infectious diseases, as many of them showed chemopreventive and chemotherapeutic effects in the case of tuberculosis, cancer, malaria, diabetes, cardiac problems, and others. Therefore, plant-derived products may play crucial roles in improving health for a variety of ailments by providing a variety of effective cures. Due to current therapeutic repurposing efforts against this newly discovered virus, we attempted to outline many plant-based compounds in this review to aid in the fight against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Attention
15.
Int J Immunopathol Pharmacol ; 36: 3946320221142793, 2022.
Article in English | MEDLINE | ID: covidwho-2138626

ABSTRACT

OBJECTIVE: Medicinal herbs are being investigated for medicationhg development against SARS-CoV-2 as a rich source of bioactive chemicals. One of the finest approaches for finding therapeutically effective drug molecules in real time is virtual screening scheme such as molecular docking in conjunction with molecular dynamics (MD) simulation. These virtual techniques provide an ample opportunity for the screening of plausible inhibitors of SARS-CoV-2 different target proteins from a comprehensive and extensive phytochemical library. The study was designed to identify potential phytochemicals by virtual screening against different receptor proteins. METHODS: In the current study, a library of plant secondary metabolites was created by manually curating 120 phytochemicals known to have antimicrobial as well as antiviral properties. In the current study, different potential phytochemicals were identified by virtual screening against various selected receptor proteins (i.e., viral main proteases, RNA-dependent RNA polymerase (RdRp), ADP ribose phosphatase, nonstructural proteins NSP7, NSP8, and NSP9) which are key proteins responsible for transcription, replication and maturation of SARS-CoV-2 in the host. Top three phytochemicals were selected against each viral receptor protein based on their best S-scores, RMSD values, molecular interactions, binding patterns and drug-likeness properties. RESULTS: The results of molecular docking study revealed that phytochemicals (i.e., baicalin, betaxanthin, epigallocatechin, fomecin A, gallic acid, hortensin, ichangin, kaempferol, limonoic acid, myricetin hexaacetat, pedalitin, quercetin, quercitrin, and silvestrol) have strong antiviral potential against SARS-CoV-2. Additionally, the reported preeminent reliable phytochemicals also revealed toxicity by no means during the evaluation through ADMET profiling. Moreover, the MD simulation study also exhibited thermal stability and stable binding affinity of the pedalitin with SARS-CoV-2 RdRp and SARS-CoV-2 main protease which suggests appreciable efficacy of the lead optimization. CONCLUSION: The biological activity and pharmacologically distinguishing characteristics of these lead compounds also satisfied as repurposing antiviral drug contenders and are worth substantial evaluation in the biological laboratory for the recommendation of being plausible antiviral drug candidates against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , SARS-CoV-2 , Phytochemicals/pharmacology , Antiviral Agents/pharmacology , RNA-Dependent RNA Polymerase
16.
Molecules ; 27(22)2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2123760

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronaviruses that emerged in China at Wuhan city, Hubei province during December 2019. Subsequently, SARS-CoV-2 has spread worldwide and caused millions of deaths around the globe. Several compounds and vaccines have been proposed to tackle this crisis. Novel recommended in silico approaches have been commonly used to screen for specific SARS-CoV-2 inhibitors of different types. Herein, the phytochemicals of Pakistani medicinal plants (especially Artemisia annua) were virtually screened to identify potential inhibitors of the SARS-CoV-2 main protease enzyme. The X-ray crystal structure of the main protease of SARS-CoV-2 with an N3 inhibitor was obtained from the protein data bank while A. annua phytochemicals were retrieved from different drug databases. The docking technique was carried out to assess the binding efficacy of the retrieved phytochemicals; the docking results revealed that several phytochemicals have potential to inhibit the SARS-CoV-2 main protease enzyme. Among the total docked compounds, the top-10 docked complexes were considered for further study and evaluated for their physiochemical and pharmacokinetic properties. The top-3 docked complexes with the best binding energies were as follows: the top-1 docked complex with a -7 kcal/mol binding energy score, the top-2 docked complex with a -6.9 kcal/mol binding energy score, and the top-3 docked complex with a -6.8 kcal/mol binding energy score. These complexes were subjected to a molecular dynamic simulation analysis for further validation to check the dynamic behavior of the selected top-complexes. During the whole simulation time, no major changes were observed in the docked complexes, which indicated complex stability. Additionally, the free binding energies for the selected docked complexes were also estimated via the MM-GB/PBSA approach, and the results revealed that the total delta energies of MMGBSA were -24.23 kcal/mol, -26.38 kcal/mol, and -25 kcal/mol for top-1, top-2, and top-3, respectively. MMPBSA calculated the delta total energy as -17.23 kcal/mol (top-1 complex), -24.75 kcal/mol (top-2 complex), and -24.86 kcal/mol (top-3 complex). This study explored in silico screened phytochemicals against the main protease of the SARS-CoV-2 virus; however, the findings require an experimentally based study to further validate the obtained results.


Subject(s)
Artemisia annua , COVID-19 Drug Treatment , Humans , SARS-CoV-2 , Coronavirus 3C Proteases , Phytochemicals/pharmacology
17.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2110124

ABSTRACT

Cholesterol synthesis occurs in almost all cells, but mainly in hepatocytes in the liver. Cholesterol is garnering increasing attention for its central role in various metabolic diseases. In addition, cholesterol is one of the most essential elements for cells as both a structural source and a player participating in various metabolic pathways. Accurate regulation of cholesterol is necessary for the proper metabolism of fats in the body. Disturbances in cholesterol homeostasis have been linked to various metabolic diseases, such as hyperlipidemia and non-alcoholic fatty liver disease (NAFLD). For many years, the use of synthetic chemical drugs has been effective against many health conditions. Furthermore, from ancient to modern times, various plant-based drugs have been considered local medicines, playing important roles in human health. Phytochemicals are bioactive natural compounds that are derived from medicinal plants, fruit, vegetables, roots, leaves, and flowers and are used to treat a variety of diseases. They include flavonoids, carotenoids, polyphenols, polysaccharides, vitamins, and more. Many of these compounds have been proven to have antioxidant, anti-inflammatory, antiobesity and antihypercholesteremic activity. The multifaceted role of phytochemicals may provide health benefits to humans with regard to the treatment and control of cholesterol metabolism and the diseases associated with this disorder, such as NAFLD. In recent years, global environmental climate change, the COVID-19 pandemic, the current war in Europe, and other conflicts have threatened food security and human nutrition worldwide. This further emphasizes the urgent need for sustainable sources of functional phytochemicals to be included in the food industry and dietary habits. This review summarizes the latest findings on selected phytochemicals from sustainable sources-algae and edible mushrooms-that affect the synthesis and metabolism of cholesterol and improve or prevent NAFLD.


Subject(s)
Agaricales , COVID-19 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Agaricales/chemistry , Pandemics , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Cholesterol/therapeutic use
18.
Biomed Pharmacother ; 156: 113946, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2085962

ABSTRACT

Qingfei Paidu decoction (QFPDD) has been clinically proven to be effective in the treatment of coronavirus disease 2019 (COVID-19). However, the bioactive components and therapeutic mechanisms remain unclear. This study aimed to explore the effective components and underlying mechanisms of QFPDD in the treatment of COVID-19 by targeting the virus-host interactome and verifying the antiviral activities of its active components in vitro. Key active components and targets were identified by analysing the topological features of a compound-target-pathway-disease regulatory network of QFPDD for the treatment of COVID-19. The antiviral activity of the active components was determined by a live virus infection assay, and possible mechanisms were analysed by pseudotyped virus infection and molecular docking assays. The inhibitory effects of the components tested on the virus-induced release of IL-6, IL-1ß and CXCL-10 were detected by ELISA. Three components of QFPDD, oroxylin A, hesperetin and scutellarin, exhibited potent antiviral activities against live SARS-CoV-2 virus and HCoV-OC43 virus with IC50 values ranging from 18.68 to 63.27 µM. Oroxylin A inhibited the entry of SARS-CoV-2 pseudovirus into target cells and inhibited SARS-CoV-2 S protein-mediated cell-cell fusion by binding with the ACE2 receptor. The active components of QFPDD obviously inhibited the IL-6, IL-1ß and CXCL-10 release induced by the SARS-CoV-2 S protein. This study supports the clinical application of QFPDD and provides an effective analysis method for the in-depth study of the mechanisms of traditional Chinese medicine (TCM) in the prevention and treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Humans , Molecular Docking Simulation , Interleukin-6 , SARS-CoV-2 , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
19.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2066116

ABSTRACT

Naturally occurring bioactives, also known as phytochemicals, have been widely recognized and researched owing to their multiple potentialities [...].


Subject(s)
Anti-Inflammatory Agents , Phytochemicals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
20.
Front Public Health ; 10: 964741, 2022.
Article in English | MEDLINE | ID: covidwho-2065648

ABSTRACT

Arisaema jacquemontii Blume is a highly medicinal and poisonous plant belong to the family Araceae. It is used to treat several deadly diseases, including viral infections. It has antioxidant, anti-cancerous, antimalarial, anti-vermicidal, and antiviral activities. Therefore, five parts of the Arisaema jacquemontii Blume plant, such as leaf, seed, stem, pulp, and rhizome extract, were evaluated for metabolic and in silico characterization of probable compounds using gas chromatography-mass spectrometry (GC-MS) analysis. A total of 22 compounds were isolated from the methanolic extracts of A. jacquemontii Blume. A selected antiviral COVID-19 protein i.e., protease (6LU7) was docked against the obtained compounds. Different affinities were obtained through various compounds. The best results were shown by three different compounds identified in the rhizome. The maximum binding affinity of these compounds is 8.1 kJ/mol. Molecular docking (MD) indicate that these molecules have the highest binding energies and hydrogen bonding interactions. The binding mode of interaction was discovered to be reasonably effective for counteracting the SARS virus COVID-19. The findings of this study could be extremely useful in the development of more phytochemical-based COVID-19 therapeutics.


Subject(s)
Antimalarials , Arisaema , COVID-19 Drug Treatment , Antioxidants , Antiviral Agents/pharmacology , Arisaema/chemistry , Molecular Docking Simulation , Peptide Hydrolases , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL